Finale: la Meccanica Quantistica può essere innocua?

Siamo quindi arrivati alla fine di questa serie di post su un possibile approccio “non convenzionale” alla risoluzione di alcuni dei nodi storici della Meccanica Quantistica (MQ).

Proviamo a riepilogare:

  1. La MQ “funziona” benissimo, ma ha degli aspetti controversi. Un grande fisico come Feynman diceva che nessuno capisce davvero la MQ, ma il problema maggiore è che la MQ, specie se accompagnata dalla sua “canonica” interpretazione detta di Copenhagen, confuta o almeno mette in seria difficoltà alcuni principi fondanti della scienza classica: il Realismo Scientifico, il Principio di Località, il Determinismo. Esistono da molti anni dei tentativi per “salvare” almeno qualcuno di questi principi: ad esempio le teorie delle variabili nascoste come quella di Bohm  appunto ipotizzando delle variabili reali ma inaccessibili che determinino gli aspetti apparentemente casuali dei fenomeni quantistici. Nessuno di questi tentativi però si è sinora affermato. 
  2. Esaminando più da vicino il problema, mi pare si possa dire che tutti gli aspetti “imbarazzanti” della MQ siano legati alle nozioni di Spazio e di Tempo. Il Principio di Indeterminazione di Heisenberg si applica tipicamente a grandezze, come la posizione, la velocità o l’energia di una particella, che hanno a che fare con lo Spazio e il Tempo, e non si applica a grandezze non spaziotemporali come la massa a riposo, lo spin o la carica elettrica.
  3. Parallelamente, l’altra grande e rivoluzionaria teoria fisica del Novecento, la Relatività Generale einsteiniana, fondandosi sul principio di equivalenza perfetta tra i sistemi di riferimento di tutti i possibili osservatori, ci ha “costretto” a considerare con sospetto la nozione di “punto” dello spazio-tempo. La Fisica non è in grado di distinguere tra due Universi che si differenzino solo per una trasformazione dello spazio-tempo che non modifichi le relazioni tra gli oggetti fisici (tecnicamente, un diffeomorfismo dello spazio-tempo e della sua metrica); questa caratteristica può anche essere espressa come background-independence, ossia la descrizione fisica del mondo non dipende dallo specifico “sfondo” spaziotemporale che usiamo. Se accettiamo l’antico principio di identità degli indiscernibili introdotto da Leibniz, non si tratterebbe di due Universi distinti, ma dello stesso Universo descritto in due modi diversi. Lo Spazio e il Tempo, quindi, non sarebbero adatti a fornire una descrizione “fondamentale” della realtà fisica.
  4. Dalle considerazioni precedenti, viene naturale chiedersi se si possa elaborare una teoria fondamentale che non faccia uso dei concetti di Spazio e di Tempo. Una teoria del genere dovrebbe essere essenzialmente relazionale, ossia basarsi solo su oggetti elementari e le loro relazioni, e sarebbe “naturalmente” background-independent.  Lo Spazio dovrebbe emergere quando si descriva un sistema “abbastanza grande” perché abbia senso definirne una “dimensione”, ma questa definizione sarebbe basata sulle grandezze “fondamentali” che costituiscono la descrizione relazionale. Ricordiamoci però che “perdere” lo spaziotempo significa perdere anche la Gravitazione einsteiniana, che è indissolubile da esso. Quindi, se vogliamo ricostruire il nostro apparato bisogna che al crescere della “dimensione” del sistema  oltre allo spaziotempo emerga anche la Gravità.
  5. Fortunatamente, ci sono delle teorie escogitate appunto per fare questo, ossia “riprodurre” la Gravitazione einsteiniana a partire da un substrato fondamentale relazionale. La più accreditata di queste è la teoria delle Spin Networks, che adotta come descrizione fondamentale della realtà fisica una rete costituita da unità dotate di spin e dalle loro relazioni. Questa teorie, ancora non elaborate in modo compiuto, sembrano però in grado di far emergere sia lo spazio-tempo, sia la Gravità, sia, anche, le leggi base della MQ.
  6. Se queste teorie fossero esatte, “salverebbero” due dei tre principi che ho citato prima e renderebbero la MQ sostanzialmente “innocua”:
    1. Il Realismo Scientifico sarebbe preservato, perché le “reti” e le loro proprietà sarebbero ben definite anche indipendentemente dal fatto di essere sottoposte a un osservazione o meno. La rete stessa, e quindi le sue NxN relazioni, costituirebbe l’insieme di variabili nascoste che giustificherebbero l’apparente ambiguità delle descrizioni quantistiche spaziotemporali.
    2. Per lo stesso motivo, sarebbe preservato anche il Determinismo, visto che le componenti probabilistiche della teoria quantistica sarebbero rimpiazzate da calcoli deterministici a partire dalle variabili “fondamentali”.
    3. Invece il Principio di Località sarebbe abbandonato, proprio perché fondato su una nozione, la contiguità spaziale, che non ha un corrispettivo nella descrizione fondamentale della realtà. Il disegno qui sotto, prelevato da uno degli articoli che ho citato, mostra perché:

locality in networks

Se nella rete il nodo i ha una relazione con j, k, l, m, quando lo Spazio “emerge” può accadere che uno di questi nodi, in questo esempio k, si trovi “spazialmente lontano” da i. Non è insomma garantito che all’esistenza di una relazione nella rete fondamentale corrisponda poi una distanza spaziale “piccola”. La nozione di “locale” non è traducibile a livello delle proprietà fondamentali.

Restano da dire, credo, solo altre due cose. Una è che non vorrei aver dato l’idea che questo percorso logico attraverso cui vi ho condotto sia la “nuova verità” della Fisica: non c’è al momento, per quanto posso dire, un consenso sul fatto che le cose stiano effettivamente così, e, data la forma fortemente teorica del tutto, è difficile che siano le osservazioni sperimentali a decidere quale teoria sia quella “giusta”. Ci sono nuove teorie della Fisica fondamentale che competono con quelle “relazionali” (come la Teoria delle Stringhe) e non so quale prevarrà.

L’altra cosa riguarda il Tempo. Forse avrete notato che ho lasciato il Tempo fuori dalle mie ultime considerazioni; il motivo è che mentre secondo l’approccio che ho descritto lo Spazio è decisamente una grandezza non “reale” a livello “fondamentale”, il Tempo “esisterebbe” anche nella descrizione fondamentale della realtà. L’autore che, insieme a Lee Smolin, ha scritto alcuni degli articoli che sto citando, ne ha pubblicato uno (leggetelo, se siete interessati al tema “tecnico”) dall’eloquente titolo Lo spazio non esiste, così il tempo può esistere. La sua tesi, sostanzialmente, è che l’eliminazione dello Spazio dalle grandezze “veramente fondamentali” consente di risolvere i paradossi legati al Tempo che, come saprete, è difficile definire nella rappresentazione relativistica einsteiniana.

Chiudo con una notazione personale. Quando, verso la fine del 2007 ho aperto questo blog, il mio scopo era in realtà anche avere una scusa per ragionare e informarmi meglio su alcuni temi che rientravano tra i miei interessi ma che non riuscivo ad approfondire; avere un pubblico vero o presunto mi ha “obbligato” a essere più organico e rigoroso nelle mie piccole esplorazioni. Il percorso che ho sintetizzato qui sopra mi sembra che almeno per ora risponda in modo promettente a uno dei quesiti che sollevavo allora. Confesso che ne sono molto contento, anche se le cose che ho trovato e vi ho raccontato c’erano quasi tutte già allora. Ero io che non le sapevo…

E se Spazio e Tempo non esistessero?

Nei post precedenti abbiamo visto i principali problemi concettuali sollevati dalla Meccanica Quantistica (MQ), rispetto a quella che era, poco più di un secolo fa, la nostra visione della realtà e della conoscenza di essa; abbiamo anche visto che questi problemi concettuali non riguardano in realtà, come talvolta si dice, lo status della realtà fisica nel suo complesso, bensì le proprietà spaziotemporali degli oggetti fisici. Einstein, il principale critico della MQ, diceva che «La luna esiste anche quando non la vediamo», ma la mia impressione è che quello che la MQ sostiene non è che quando non la osserviamo non si possa dire che la luna esiste, bensì che non abbia senso affermare che la luna si trovi in una certa posizione. Questo fu sufficiente per rappresentare una rivoluzione epistemologica, ma anziché un “difetto di realtà” della luna, potrebbe indicare un difetto di realtà del concetto di posizione.

Abbiamo poi visto che nella Relatività Generale, la grande teoria einsteiniana che ancora oggi è valida per descrivere la Gravitazione e la Fisica su scala cosmica, lo status del “tessuto” spaziotemporale (nota terminologica: in inglese la parola tecnica usata è manifold, il cui corrispondente in italiano sarebbe varietà, ma preferisco evitare termini il cui significato matematico è diverso da quello corrente) è meno consistente che in Relatività Ristretta (e quindi in MQ). In realtà, dobbiamo comprendere che il concetto di “punto-istante” dello spazio-tempo non ha significato fisico, a meno che a quel “punto” sia associato un evento fisico osservabile, come un’interazione tra due particelle. Una teoria che accetti l’einsteiniano Principio di Equivalenza di tutti gli osservatori deve infatti essere indipendente dalla struttura del “tessuto” spaziotemporale, ossia deve essere background-independent. Un modo radicale di essere background-independent, ovviamente, è di rinunciare allo Spazio e al Tempo come entità “fondamentali” e trattarli invece come emergenti, un po’ come quello che chiamiamo pressione di un gas “in realtà” è riducibile al movimento di miliardi di molecole.

Ma esistono teorie che nei loro fondamenti facciano a meno di Spazio e Tempo? Sì, esistono, e sono generalmente teorie nate per riconciliare MQ e Gravitazione. Tipicamente, sono teorie relazionali, nel senso che il loro livello fondamentale di descrizione è costituito da “oggetti elementari” (come fossero particelle), e dalle relazioni tra di esse. Un esempio che abbiamo incontrato molto tempo fa sono le Spin Networks, una teoria della Gravitazione che, a partire da “unità di spin” e da relazioni tra di esse, ha come “livello fondamentale” di descrizione sostanzialmente una rete:

spin network

Questa rete non è nello spazio ordinario: è semplicemente una rete di relazioni. Chi ha sviluppato la teoria delle Spin Network, però, è riuscito a dimostrare che si può definire in modo sensato un’area e un volume a partire dalle relazioni della rete. Quindi, è possibile “ricostruire” la nozione di Spazio a partire da una “realtà ultima” in cui lo Spazio “non esiste”. Ma è anche possibile, a partire da questa o da altre teorie relazionali, ricostruire la MQ, facendo in modo quindi che a emergere non sia solo lo Spazio, ma anche la MQ che usa il concetto ordinario di Spazio? Se si ottenesse questo, automaticamente si soddisferebbe l’esigenza di conservare i moltissimi risultati sperimentalmente confermati della MQ.

Ci sono diversi fisici teorici che hanno cercato di ottenere proprio questo risultato. Un esempio è un articolo di F. Markopoulou e Lee Smolin, autore di alcuni validissimi libri di divulgazione. Traducendo a braccio dall’abstract, l’articolo mostra che «da un modello background-independent privo di meccanica quantistica, la teoria quantistica emerge nello stesso limite nel quale appaiono le proprietà spaziali».

Nei termini in cui tradizionalmente si discutono le alternative alla MQ, questo tipo di teoria sarebbe una teoria delle variabili nascoste non locali, dove le variabili nascoste, sempre secondo gli autori, sarebbero le relazioni (gli archi) che collegano i nodi della rete (che in questo caso non è necessariamente una spin network, ma segue una logica simile).

Quindi, in un certo senso, se questi signori hanno ragione il nostro cerchio è chiuso: lo Spazio non è “reale”, o almeno è reale quanto lo sono tutte quelle grandezze fisiche (come la pressione, o la temperatura) che sono definibili solo, collettivamente, per sistemi “grandi” ma non hanno senso a livello microscopico. Se le proprietà spaziali degli oggetti non sarebbero reali, oggetti e relazioni invece lo sarebbero, e quindi il Realismo Scientifico sarebbe valido.

Nel prossimo post, comunque, proverò a riassumere e tirare le somme, che in questo caso è un’operazione un po’ complicata… e richiede anche un po’ di Tempo.

Meccanica Quantistica, spazio-tempo e Einstein

Nel post precedente abbiamo visto che, in sostanza, le “anomalie” che ci imbarazzano nella Meccanica Quantistica sono associate alle grandezze spaziotemporali, e mi chiedevo se esse non fossero piuttosto indice di qualcosa che “non va” nella “normale” concezione dello spazio-tempo usata dalla MQ, che è sostanzialmente quella della Relatività Ristretta di Einstein.

In effetti Einstein ebbe un ruolo molto articolato nei confronti della MQ: fu uno dei suoi iniziatori, ma è anche passato alla storia come il suo maggior nemico (“Dio non gioca a dadi”). Anche relativamente a Spazio e Tempo, Einstein ne fornì due importanti, e diverse, visioni nella teoria della Relatività Ristretta e in quella della Relatività Generale.

Infatti, nella Relatività Ristretta lo spazio e il tempo perdono la loro condizione “assoluta” e diventano, appunto, relativi a uno specifico osservatore. Da qui deriva una serie di conseguenze sorprendenti, come la dilatazione dei tempi, la contrazione delle lunghezze, la relatività della simultaneità, eccetera. Però dal punto di vista “matematico” spazio e tempo conservano una struttura continua e lineare.

Nella Relatività Generale le cose cambiano ancora. Non solo perché lo spazio-tempo diventa curvo, ma perché in realtà la nozione di “punto nello spazio” perde di significato. Infatti le leggi della Fisica e le formule che definiscono la dinamica devono essere covarianti, il che vuol dire che a tutti gli effetti due “universi” che differiscono solo per una trasformazione del sistema di riferimento spaziotemporale sono in tutto e per tutto equivalenti. Questo tipo di trasformazioni (diffeomorfismi) non sono semplici traslazioni o cambiamenti di scala, ma possono modificare la curvatura dello spaziotempo, come si vede da questa immagine di un diffeomorfismo di una griglia a maglie quadrate:

Proprio per questo, il singolo “punto-istante” perde di senso fisico, in quanto ogni rappresentazione spaziotemporale di un sistema fisico è equivalente a tutte le altre che appartengono alla classe che si ottiene sottoponendo lo spazio-tempo a questo tipo di trasformazioni. Alla fine, per Einstein, l’unica cosa che ha un senso fisico sono le interazioni tra oggetti:

«Tutte le nostre osservazioni nello spazio-tempo consistono invariabilmente nella determinazione di coincidenze spaziotemporali. Se gli unici eventi fisici fossero i movimenti di punti materiali, allora l’unica cosa osservabile sarebbero gli incontri tra questi punti […] Un sistema di riferimento non serve ad altro che a facilitare la descrizione della totalità di queste coincidenze»

Ecco quindi da dove proviene la caratteristica di background-independence che citavo in un post precedente: l’unica cosa che ha senso fisico sono gli eventi che mettono in relazione oggetti diversi, non il tipo di “sfondo spaziotemporale” su cui questi eventi si svolgono. Una discussione molto approfondita sul significato di questo aspetto della Relatività Generale si trova sul sito della Stanford Encyclopedia of Philosophy, sotto la voce The Hole Argument, che deriva appunto dal fatto che Einstein nel descrivere l’invarianza della Fisica rispetto a cambiamenti dello “sfondo spaziotemporale” fece riferimento alla situazione in cui ci sia un “buco” completamente privo di materia, per dire che qualsiasi conformazione dello spazio-tempo in un simile buco è fisicamente equivalente.

Ecco quindi che lo status “sospetto” dello spazio e del tempo come “reali” è confermato dall’idea einsteiniana, faticosamente elaborata e a lungo sottovalutata nelle sue implicazioni, che le leggi della Fisica devono essere indipendenti da qualsiasi trasformazione del sistema di riferimento, insomma l’indipendenza dal background. Certo, un buon modo per essere sicuri che le nostre teorie fisiche siano indipendenti dal background spazio-temporale sarebbe che questo background semplicemente non esistesse… Ne parliamo nel prossimo post.